Mittlere Schwingungsamplituden, der *Bastiansen—Morino*-Schrumpfungseffekt und thermodynamische Größen einiger isotopenmarkierter Moleküle des Kohlentrioxids*

Von

G. Nagarajan** und James R. Durig

Aus dem Department of Chemistry, University of South Carolina, Columbia (S. C.) 29208, USA

(Eingegangen am 4. Februar 1967)

Die mittleren Schwingungsamplituden gebundener und nichtgebundener Atompaare und der $Bastiansen-Morino\text{-}Schrumpfungseffekt isotopenmarkierter Moleküle des Kohlentrioxids, wie z. B. <math display="inline">^{12}\mathrm{C}^{16}\mathrm{O}_3$, $^{12}\mathrm{C}^{18}\mathrm{O}_3$ und $^{13}\mathrm{C}^{16}\mathrm{O}_3$, wurden mit Hilfe der gruppentheoretischen Methode unter Verwendung von Symmetriekoordinaten für die Temperaturen $T=298^\circ$ K und $T=500^\circ$ K berechnet. Die molaren thermodynamischen Größen wurden für den Temperaturbereich von $200-2000^\circ$ K unter Verwendung des Modells eines starren Rotators und eines harmonischen Oszillators berechnet. Die Resultate werden kurz besprochen.

Mean amplitudes of vibration for the bonded as well as non-bonded atom pairs and Bastiansen-Morino shrinkage effect for the isotopic species of carbon trioxide such as $^{12}\mathrm{C}^{16}\mathrm{O}_3$, $^{12}\mathrm{C}^{18}\mathrm{O}_3$, and $^{13}\mathrm{C}^{16}\mathrm{O}_3$ have been computed at the temperatures $T=298^\circ$ K and $T=500^\circ$ K by the group theoretical method employing the symmetry coordinates. Molar thermodynamic functions have also been calculated for the temperature range $200-2000^\circ$ K on the basis of a rigid rotator, harmonic oscillator model. Results are briefly discussed.

^{*} Diese Arbeit wurde durch eine finanzielle Unterstützung der National Aeronautics and Space Administration an die University of South Carolina ermöglicht.

 $^{\ ^{**}}$ Ständige Adresse: Kalyanapuram, Thanjavur District, Madras State, India.

Einleitung

Die Existenz des Kohlentrioxids, eines bisher hypothetischen Moleküls, das nach Walsh¹ 22 Valenzelektronen mit einer planaren trigonalen Symmetrie besitzt und paramagnetisch ist, konnte jetzt experimentell bestätigt werden; Tagirov und Shevchuk2 berichteten über den spektroskopischen Nachweis des Kohlentrioxids bei der Verbrennung von Kohlenmonoxid in molekularem Sauerstoff. Raper und DeMore³ fanden im Verlaufe von Photolyseversuchen, daß Kohlentrioxid sich als Zwischenprodukt der Reaktion zwischen molekularem Sauerstoff in einem angeregten Elektronenzustand und Kohlenmonoxid bildet. In allerjüngster Zeit wurden die Reaktionsprodukte der UV-Photolyse des Kohlendioxids bei 77° K im Vakuum mit Hilfe der Infrarotspektroskopie untersucht; dabei konnte eine Molekülart als Kohlentrioxid identifiziert werden; ferner wurden Versuche mit den Isotopen ¹³C und ¹⁸O durchgeführt, die planare trigonale Symmetrie bestätigt, die Grundschwingungen der verschiedenen isotopenmarkierten Molekülarten auf Grund einer D_{3 h}-Symmetrie zugeordnet und von Clutter, Moll und Thompson⁴ Kraftkonstanten unter der Annahme eines Urey—Bradley-Kraftfeldes berechnet. Unter Verwendung dieser neuen Schwingungsdaten wird in der vorliegenden Arbeit über die Berechnung der mittleren Schwingungsamplituden und des Bastiansen-Morino-Schrumpfungseffektes mit Hilfe der Methode von Cyvin⁵ und von Symmetriekoordinaten berichtet. Die Berechnung der molaren thermodynamischen Größen erfolgte unter Zugrundelegung eines starren Rotator-harmonischer Oszillator-Modells für den Temperaturbereich von $200-2000^{\circ} \text{ K für } ^{12}\text{C}^{16}\text{O}_3, \ ^{12}\text{C}^{18}\text{O}_3 \text{ und } ^{13}\text{C}^{16}\text{O}_3.$ Die Resultate der vorliegenden Untersuchungen sollten für die Interpretation der Ergebnisse der Elektronenbeugung, der experimentell erhaltenen Entropiewerte und der Wärmekapazitäten sehr nützlich sein.

Mittlere Schwingungsamplituden

Das Kohlentrioxid, das eine planare trigonale Symmetrie der Symmetriepunktgruppe $D_{3\,h}$ besitzt, kann auf Grund entsprechender Symmetriebetrachtungen und Auswahlregeln 6 Schwingungsfreiheitsgrade be-

¹ A. D. Walsh, J. Chem. Soc. [London] 1953, 2301.

² R. B. Tagirov und I. P. Shevchuk, Dokl. Akad. Nauk SSSR. 116, 797 (1957).

³ O. F. Raper und W. B. DeMore, J. Chem. Physics, 40, 1047 (1964).

⁴ D. R. Clutter, N. G. Moll und W. E. Thompson, Infrared Spectral Study of Carbon Trioxide, a Photolysis Product of CO₂ at 77° K. Reported at the Symposium on Molecular Structure and Spectroscopy, The Ohio State University, Columbus 10, Ohio, June 14—18, 1965.

⁵ S. J. Cyvin, Spectrochim. Acta **15**, 828 (1959).

⁶ S. J. Cyvin, Acta Chem. Scand. 13, 334 (1959).

tätigen, von denen nur vier Grundschwingungen sind, die sich auf die verschiedenen irreduziblen Darstellungen wie folgt verteilen: A_1' (R, p) + + A_2'' (I, ||) + 2 E' (R, dp; I \perp), worin R, I, p, dp, || und \perp ramanaktiv, IR-aktiv, polarisiert, nichtpolarisiert, parallel und senkrecht bedeuten. Die Frequenz ν_1 entspricht einer vollkommen symmetrischen C—O-Streckenschwingung der Rasse A_1' ; ν_2 einer "out-of-plane"-Schwingung der Gruppe A_2'' , ν_3 und ν_4 den asymmetrischen C—O-Streck- und Deformationsschwingungen der Gruppe E'. Die Frequenzen ν_1 und ν_2 entsprechen den nichtentarteten Schwingungen, während ν_3 und ν_4 zu den zweifach entarteten gehören. In Tab. 1 sind die Grundschwingungen für 12 Cl 16 O $_3$, 12 Cl 18 O $_3$ und 13 Cl 16 O $_3$ in cm $^{-1}$ angegeben. Obwohl die Grundschwingung ν_1 nur ramanaktiv ist, wurde sie aus den beobachteten schwachen Kombinations- und Oberschwingungen des IR-Spektrums 4 zugeordnet.

Tabelle 1. Grundschwingungen einiger isotop markierter Kohlentrioxidmoleküle in cm⁻¹

Molekül	$v_1(\mathbf{A}_1{}')$	$\nu_2({ m A_2}^{\prime\prime})$	$ m v_3(E')$	ν ₄ (Ε')
$^{12}\mathrm{C}^{16}\mathrm{O}_3$	1073	1880	2045	972
$^{12}\mathrm{C}^{18}\mathrm{O}_{3}$	1015	1845	2019	954
$^{13}\mathrm{C16O}_{3}$	1072	1835	1991	947

Eine Methode zur Bestimmung mittlerer Schwingungsamplituden eines Moleküls oder eines Ions der vorliegenden Untersuchung ist bereits von $Cyvin^{6,7}$ entwickelt worden. Da hier die gleiche Methode angewendet wurde, darf für genauere theoretische Betrachtungen und die Berechnungen auf die Arbeiten von $Cyvin^{6,7}$ verwiesen werden. Als C—O-Abstand wurde hier in Anlehnung an verwandte Systeme⁸ ein Wert von 1,313 Å angenommen. Die die Normalschwingungen in Termen der mittleren Amplitudenquadrate wiedergebenden Säkulargleichungen wurden mit Hilfe der Σ - und G-Matrizen und der in Tab. 1 für diese drei Moleküle angeführten Grundschwingungen in cm⁻¹ für die Temperaturen $T=298^\circ$ K und $T=500^\circ$ K aufgestellt. Da für die Rasse E' drei Elemente mit nur zwei Gleichungen zur Verfügung standen, wurden die Gleichungen in der von $Torkington^{9,10}$ beschriebenen Art gelöst. Die Gleichungen für die Rassen A_1' und A_2' sind singulär, so daß die Elemente dieser Rassen

⁷ S. J. Cyvin, Spectrochim. Acta **17**, 1219 (1961).

⁸ L. E. Sutton, Tables of Interatomic Distances and Configuration in Molecules and Ions. Special Publication No. 11, The Chemical Society, London (1958).

⁹ P. Torkington, J. Chem. Physics 17, 357 (1949).

¹⁰ P. Torkington, Proc. Roy. Soc. London. A 64, 32 (1951).

direkt ausgewertet werden können. In Tab. 2 sind die für die Temperaturen $T=298^\circ$ K und $T=500^\circ$ K erhaltenen Werte der symmetrisierten Matrizen der mittleren Amplitudenquadrate in Ų der genannten drei

Tabelle 2. Symmetrisierte Matrizen der mittleren Amplitudenquadrate einiger isotop markierter Kohlentrioxidmoleküle in Å

		Symmetrisierte			
Molekül	Element	Matrix der mitt	leren Amplitude		
		$T=298^{\circ}{ m K}$	$T=500^{\circ}\mathrm{K}$		
	Σ_{11}	0,0009933	0,0010768		
	Σ_{22}	0,0084107	0,0084841		
$^{12}{ m C}^{16}{ m O}_{3}$	Σ_{33}	0,0017806	0,0018024		
	Σ_{44}	0,0056498	0,0057205		
	Σ_{34}	0,0012339	0,0011428		
	Σ_{11}	0,0009368	0,0010282		
	Σ_{22}^{-2}	0,0083807	0,0084618		
$^{12}{\rm C}^{18}{ m O}_{3}$	$\Sigma_{33}^{}$	0,0016792	0,0017684		
	Σ_{44}	0.0054086	0,0055563		
	Σ_{34}	0,0012134	0,0011536		
	Σ_{11}	0,0009942	0.0010778		
	Σ_{22}^{11}	0,0080877	0,0081677		
$^{13}{\rm C}^{16}{\rm O}_{3}$	Σ_{33}	0,0017523	0,0018275		
. 0	Σ_{44}	0,0056319	0,0057816		
	Σ_{34}	0,0012025	0,0011887		

Moleküle angegeben. Tab. 3 enthält die berechneten Werte der mittleren. Amplitudenquadrate in $Å^2$ für die beiden genannten Temperaturen, σ_r bedeutet darin das mittlere Amplitudenquadrat des Atompaares C-O, σ_{θ} die entsprechende Größe der O—C—O-Knickschwingung, σ_{α} die der "out-of-plane"-Schwingung, od die des nichtgebundenen Atompaares O_{min} O_{r} und σ_{rr} , $\sigma_{\theta\theta}$, $\sigma_{\text{r}\theta}$, $\sigma_{\text{r}\theta}$, $\sigma_{\text{r}d}$ und σ_{rd} schließlich die entsprechenden Wechselwirkungsgrößen. Die für alle untersuchten Moleküle bei den beiden Temperaturen berechneten Werte der verallgemeinerten mittleren Amplitudenquadrate in Å² sind in Tab. 4 sowohl für die gebundenen wie auch die nichtgebundenen Atompaare angeführt; $\langle \Delta z^2 \rangle$ bedeutet darin das mittlere Quadrat der parallelen Amplitudenkomponente, $\langle \Delta x^2 \rangle$ und $\langle \Delta y^2 \rangle$ die mittleren Quadrate der senkrechten Amplitudenkomponente und $\langle \Delta \times \Delta \times \rangle$, $\langle \Delta' \times \Delta \times \rangle$ und $\langle \Delta \times \Delta \times \rangle$ sind die mittleren gewünschten. Produkte. Die entsprechenden berechneten Werte der mittleren Schwingungsamplituden in Å für gebundene und nichtgebundene Atompaare bei den beiden genannten Temperaturen sind für die drei untersuchten Moleküle in Tab. 5 angeführt.

Das von nichtgebundenen Atompaaren herrührende mittlere Amplitudenquadrat ist größer als das gebundener Atompaare. Noch größere

Tabelle 3. Größen der mittleren Amplitudenquadrate einiger isotop markierter Kohlentrioxidmoleküle

	120	12C16O.	197	12/18/0	1781	130180
Quantity	$T=298^\circ\mathrm{K}$	$T=500^{\circ}\mathrm{K}$	$T=298^{\circ}\mathrm{K}$	$T=500^{\circ}\mathrm{K}$	$T=298^{\circ}\mathrm{K}$	$T=500^\circ{ m K}$
g	0,0015182	0,0015605	0,0014317	0,0015217	0,0014996	0,0015776
$\sigma_{\rm r.r.}$	-0,0002624	0,0002419	0,0002475	-0,0002467	-0,0002527	-0,0002499
φ	0,0037665	0,0038137	0,0036057	0,0037042	0,0037546	0,0038544
$\sigma_{\theta\theta}$	0,0018833	0,0019069	0,0018029	0,0018521	-0,0018773	0,0019272
ď	0,0084107	0,0084841	0,0083807	0,0084618	0,0080877	0,0081677
$\sigma_{r\theta}$	0,0008225	0,0007618	0,0008089	0,0007691	0,0008017	0,0007925
$\sigma_{\mathrm{r}_{\theta}}$	0,0004113	0,0003809	0,0004045	0,0003846	0,0004009	-0,0003963
$\sigma_{ m d}$	0,0021128	0,0022716	0,0019773	0,0021725	0,0021148	0,0022689
σ_{rd}	0,0000432	0,0000379	0,0000242	0,0000428	-0,0000369	-0,0000366
$\sigma_{\mathrm{rd}}^{'}$	0,0008818	0,0008515	0,0008233	0,0009118	0,0008795	0,0009518

Tabelle 4. Größen der generalisierten mittleren Amplitudenquadrate einiger isotop markierter Kohlentrioxidmoleküle in Å²

75 1 1 1 1	Symbol C-		-0 0-0		-O
Molekül	Symbol	$T = 298^{\circ} \mathrm{K}$	$T\!=\!500^{\circ}\mathrm{K}$	T = 298°K	$T = 500^{\circ} \mathrm{K}$
$^{12}\mathrm{C}^{16}\mathrm{O}_3$	$egin{array}{l} [\Delta z^2] \ [\Delta x^2] \ [\Delta y^2] \ [\Delta x \ \Delta y] \ [\Delta x \ \Delta x] \ [\Delta z \ \Delta x] \end{array}$	0,0015182 0,0012555 0,0009345 0 0	0,0015605 0,0012712 0,0009427 0 0	0,0021128 0,0011196 0 0 0 0	0,0022716 0,0011948 0 0 0 0
12C18O3	$egin{array}{l} [\Delta z^2\ [\Delta x^2]\ [\Delta y^2]\ [\Delta x\ \Delta y]\ [\Delta x\ \Delta x]\ [\Delta y\ \Delta z]\ [\Delta z\ \Delta x] \end{array}$	0,0014317 0,0012019 0,0009312 0 0	0,0015217 0,0012347 0,0009402 0 0	0,0019773 0,0010405 0 0 0 0	0,0021725 0,0011443 0 0 0 0
$^{13}\mathrm{C}^{16}\mathrm{O}_3$	$egin{array}{l} [\Delta z^2] \ [\Delta x^2] \ [\Delta y^2] \ [\Delta x \ \Delta y] \ [\Delta y \ \Delta z] \ [\Delta z \ \Delta x] \end{array}$	0,0014996 0,0012520 0,0008986 0 0	0,0015776 0,0012848 0,0009075 0 0	0,0021148 0,0011206 0 0 0 0	0,0022689 0,0011911 0 0 0

Tabelle 5. Mittlere Schwingungsamplituden einiger isotop markierter Kohlentrioxidmoleküle in Å

Molekül	Abstand	Mittlere Schwir	ngungsamplituden
Wolekui	Abstand	$T = 298^{\circ} \mathrm{K}$	$T = 500^{\circ} \mathrm{K}$
12C16O3	CO	0,0390	0,0395
v	00	0,0460	0,0477
$^{12}\mathrm{C}^{18}\mathrm{O}_3$	СО	0,0378	0,0390
	00	0,0445	0,0466
$^{13}\mathrm{C}^{16}\mathrm{O}_3$	CO	0,0387	0,0397
	OO	0,0460	0,0476

Werte als diese beiden Größen nimmt die der "in-plane"-Knickschwingung an; die allergrößten Werte besitzt schließlich die "out-of-plane"-Schwingung. Alle diese Werte sind im allgemeinen signifikant größer als die der Wechelwirkungsgrößen. Die Wechselwirkungsgrößen $\sigma_{\theta\theta}$ und $\sigma_{\theta\theta}$ sind infolge der Molekülsymmetrie nur halb so groß als σ_{θ} und $\sigma_{r\theta}$, besitzen jedoch ein umgekehrtes Vorzeichen. Die Wechselwirkungsgrößen σ_{rr} , $\sigma_{r\theta}$ und σ_{rd} sind sehr viel kleiner als die der anderen Wechselwirkungs-

größen $\sigma_{\theta\theta}$, $\sigma_{r\theta}$ und σ_{rd} . Die Werte aller Größen haben im allgemeinen einen positiven Temperaturkoeffizienten. Die mittleren gemischten Produkte $\langle \Delta \times \Delta \times \rangle$, $\langle \Delta \times \Delta \times \rangle$ und $\langle \Delta \times \Delta \times \rangle$ für die gebundenen und nichtgebundenen Atompaare und die mittlere senkrechte Amplitudenkomponente $\langle \Delta y^2 \rangle$ für das nichtgebundene Atompaar verschwinden infolge der Symmetrie des Molekülsystems. Die verallgemeinerten mittleren Amplitudenquadrate sind für die Berechnng des Bastiansen-Morino-Schrumpfungseffekts erforderlich, mit dem wir uns im nächsten Abschnitt befassen werden. Die Grundschwingungen der isotopenmarkierten Molekülspecies des Kohlentrioxids haben es erleichtert, einen sehr verläßlichen Wert von 0,038 Å-0,039 Å für das gebundene Atompaar C-O und einen Wert von 0.045 Å-0.046 Å für das nichtgebundene Atompaar O-O für die Temperatur $T = 298^{\circ} \,\mathrm{K}$ und ähnlich 0.039 Å $-0.040 \,\mathrm{Å}$ für das gebundene Atompaar und 0,047 Å-0,048 Å für das nichtgebundene Atompaar bei der Temperatur $T=500^{\circ}\,\mathrm{K}$ (s. Tab. 3, 4 und 5) zu erhalten. Die Werte der mittleren Schwingungsamplituden für die gebundenen und nichtgebundenen Abstände in Kohlentrioxid bei den genannten Temperaturen sind etwas kleiner als die der entsprechenden Abstände im Karbonation¹¹ bei denselben Temperaturen; der Grund hierfür liegt in einem signifikanten Unterschied der Werte der Grundschwingungen in den beiden Systemen. Die Ergebnisse der vorliegenden Arbeit sollten für eine Interpretation der Ergebnisse der Elektronenbeugung sehr wertvoll sein, sofern diese in Zukunft möglich werden sollte.

Der Bastiansen—Morino-Schrumpfungseffekt

Karle und Karle¹² haben als erste den Begriff der Schrumpfung chemischer Bindungen bei der Analyse der Ergebnisse von Elektronenbeugungsuntersuchungen an gasförmigen Molekülen eingeführt; Bastiansen und Mitarb.^{13–15} haben diesen Befund später auf Grund ihrer Beobachtungen am Dimethylacetylen und Allen in der Gasphase bestätigt. Weitere Ergebnisse in dieser Richtung lieferten Elektronenbeugungsuntersuchungen am Kohlendioxid durch Munthe—Kass¹⁶ und Breed und Mitarb.¹⁷ sowie am Butadien¹⁸ und Schwefelkohlenstoff¹⁹ durch Traette-

¹¹ G. Nagarajan, Indian J. pure appl. Physics 4, 743 (1966).

¹² I. Karle and J. Karle, J. Chem. Physics 17, 1052 (1949).

¹³ A. Almenningen, O. Bastiansen und T. Munthe-Kass, Acta Chem. Scand. 10, 261 (1956).

¹⁴ A. Almenningen, O. Bastiansen und M. Traetteberg, Acta Chem. Scand. 13, 1699 (1959).

¹⁵ O. Bastiansen und M. Traetteberg, Acta Cryst. 13, 1108 (1960).

¹⁶ T. Munthe-Kass, Dissertation, Universität Oslo, (1960).

H. Breed, O. Bastiansen und A. Almenningen, Acta Cryst. 13, 1108 (1960).
 M. Traetteberg, Dissertation, Norges Teknisk Høgskole, Trondheim (1960).

¹⁹ Y. Morino und T. Ijima, J. Phys. Soc. Japan 17, 27 (1962).

berg 18. Der Effekt wurde, obwohl der Größe nach nur klein, den senkrechten Schwingungen zugeschrieben; bei seiner Vernachlässigung erscheinen lineare Moleküle als gekrümmt. Wegen der Bedeutung solcher Untersuchungen bei der Aufklärung der Strukturen der verschiedensten Moleküle hat Morino²⁰ bereits eine Theorie dieses Effektes in Termen der intramolekularen Bewegung und unter Verwendung verallgemeinerter mittlerer Amplitudenquadrate, wie sie von Morino und Hirota²¹ definiert worden sind, aufgestellt. Diese Theorie geht von einer von Morino und Mitarb. 22, 23 angegebenen Potenzreihenentwicklung für den Schrumpfungseffekt linearer und nicht linearer Konformationen aus. Bei linearen Konformationen wird die Schrumpfung hauptsächlich durch senkrechte Verlagerungen des Atompaares bewirkt. Bei nicht linearen Konformationen sind zwei verschiedene Arten von Schrumpfungen, nämlich "natürliche" und "praktische", definiert 22, 23 worden; es konnte bewiesen werden, daß sie einer Näherung erster Ordnung entsprechen. Die anharmonischen Terme heben sich bei linearen Konformationen auf, jedoch nicht bei nicht linearen Konformationen, außer wenn es sich um hochsymmetrische Moleküle handelt, die im Elektronengrundzustand keine gänzlich symmetrischen Knickschwingungen besitzen. Die Gesamtheit dieser Erscheinungen wurde von späteren Autoren spektroskopischer Untersuchungen an verschiedenen linearen und nicht linearen Systemen als "Bastiansen— Morino-Schrumpfungseffekt" bezeichnet.

Infolge seiner planaren trigonalen Symmetrie hat Kohlentrioxid in der Rasse A_1' nur eine vollkommen symmetrische Streckschwingung, so daß eine Berechnung des nicht-linearen Schrumpfungseffektes für ${\rm CO_3}$ möglich sein sollte. Ein analytischer Ausdruck für den Bastiansen—Morino-Schrumpfungseffekt eines derartigen Moleküls ist von Meisingseth und $Cyvin^{25}$ bereits angegeben worden:

$$-\delta = (1/6 \text{ R}) \{ (1/\sqrt{3}) \Sigma_{22} - (\sqrt{3}/2) \Sigma_{33} + (\sqrt{3}/2) \Sigma_{44} + \Sigma_{34} \}$$

R bedeutet darin den Kernabstand der Gleichgewichtskonfiguration.

Die Werte des Bastiansen—Morino-Schrumpfungseffektes für die Temperaturen $T=298^\circ$ K und $T=500^\circ$ K wurden aus Kernabständen und den in Tab. 4 angeführten verallgemeinerten mittleren Amplitudenquadraten oder den symmetrisierten Matrizen der mittleren Amplituden-

²⁰ Y. Morino, Acta Cryst. 13, 1107 (1960).

²¹ Y. Morino und E. Hirota, J. Chem. Physics 23, 737 (1955).

²² Y. Morino, K. Kuchitsu und T. Oka, J. Chem. Physics 36, 1108 (1962).

²³ Y. Morino, S. J. Cyvin, K. Kuchitsu und T. Ijima, J. Chem. Physics 36, 1109 (1962).

²⁴ G. Nagarajan und E. R. Lippincott, J. Chem. Physics 42, 1809 (1965).

²⁵ E. Meisingseth und S. J. Cyvin, J. Mol. Spectroscopy 8, 464 (1962).

quadrate der Tab. 2 berechnet; sie sind in Tab. 6 in Å angegeben. Alle sich auf die mittleren Schwingungsamplituden beziehenden Überlegungen sind auch auf den Bastiansen—Morino-Schrumpfungseffekt anwendbar. Seine Werte müssen trotz ihrer vermeintlichen Kleinheit zu den bei der Elektronenbeugung beobachteten nichtgebundenen Abständen der entsprechenden Temperatur hinzugefügt werden, wenn die den geometrischen Gesetzen starrer Moleküle gehorchenden fiktiven mittleren nichtgebundenen Abstände ermittelt werden sollen. Elektronenbeugungsuntersuchungen des hier betrachteten Moleküls sind jedoch noch nicht ausgeführt worden, so daß hier ein Vergleich mit den vorliegenden Ergebnissen nicht angestellt werden kann.

Tabelle 6. Bastiansen—Morino-Schrumpfungseffekt einiger isotop markierter Kohlentrioxidmoleküle in Å

Molekül	Bastiansen—Morino	$Bastians en -Morino\hbox{-} Schrumpfungs effekt$		
Molekui	$T\!=\!298^\circ\mathrm{K}$	$T = 500^{\circ} \mathrm{K}$		
$^{12}{ m C}^{16}{ m O}_{3}$	0,001198	0,001198		
$^{12}\mathrm{C}^{18}\mathrm{O}_3$	0,001178	0,001183		
$^{13}\mathrm{C}^{16}\mathrm{O}_3$	0,001172	0,001184		

Tabelle 7. Enthalpie, freie Enthalpie, Entropie und spezifische Wärme des Moleküls¹²C¹⁶O₃ für den Zustand des idealen Gases bei einem Druck von 1 Atmosphäre (alle Größen in cal·Grad⁻¹·Mol⁻¹)

$T(^\circ\mathbf{K})$	$(H_0 - H_0^{\circ})/T$	$-\!$	S°	$C_{m p}{}^\circ$
200	7,973	46,876	54,849	8,143
273,16	8,088	49,377	57,465	8,734
298,16	8,150	50,086	58,236	8,990
300	8,159	50,137	58,296	9,024
400	8,526	52,531	61,057	10,265
500	9,005	54,484	63.489	11,561
600	9,538	56,175	65,713	12,768
700	10,069	57,680	67,749	13,805
800	10,592	59,060	69,652	14,693
900	11,100	60,345	71,445	15,439
1000	11,565	61,537	73,102	16,056
1100	11,999	62,661	74,660	16,564
1200	12,386	63,708	76,094	16,978
1300	12,754	64,713	77,467	17,331
1400	13,099	65,684	78,783	17,630
1500	13,409	66,597	80,006	17,878
1600	13,687	67,460	81,147	18,061
1700	13,956	68,305	82,261	18,269
1800	14,200	69,105	83,305	18,427
1900	14,427	59,887	74,314	18,559
2000	14,640	60,637	75,277	18,678

Tabelle 8. Enthalpie, freie Enthalpie, Entropie und spezifische Wärme des Moleküls ¹²C¹⁸O₃ für den Zustand des idealen Gases bei einem Druck von 1 Atmosphäre (alle Größen in cal · Grad⁻¹ · Mol⁻¹)

T (°K)	$(H_0 -\!\!\!\!\!- H_0{}^\circ)/T$	$-(F_0 - H_0^\circ)/T$	S°	C_{p}°
200	7,979	47,512	55,491	8,186
273,16	8,116	50,314	58,430	8,853
298,16	8,190	50,731	58,921	9,143
300	8,196	50,781	58,977	9,167
400	8,601	53,192	61,793	10,478
500	9,104	55,162	64,266	11,773
600	9,658	56,874	66,532	12,987
700	10,195	58,397	68,592	13,988
800	10,727	59,792	70,519	14,910
900.	11,235	61,089	72,324	15,598
1000	11,705	62,302	74,007	16,197
1100	12,128	63,429	75,557	16,667
1200	12,529	64,506	77,035	17,093
1300	12,899	65,528	$78,\!427$	17,436
1400	13,235	66,500	79,735	17,723
1500	13,544	67,422	80,966	17,976
1600	13,819	68,299	82,118	18,160
1700	14,078	69,137	83,215	18,337
1800	14,323	69,963	$84,\!286$	18,486
1900	14,543	70,736	85,279	18,615
2000	14,752	71,484	86,236	18,730

Thermodynamische Funktionen

Infolge ihrer Wichtigkeit, Bedeutung für eine Interpretation experimentell bestimmter Entropien, spezifischer Wärmen usw. wurden die statistischen thermodynamischen Funktionen wie die Enthalpiefunktion $(H_0 - H_0^0)/T$, die freie Enthalpiefunktion $(F_0 - H_0^0)/T$, die Entropie S_0 und die spezifische Wärme C_p^0 für die genannten drei isotopenmarkierten Kohlentrioxidmoleküle für den Temperaturbereich 200—2000°K unter Verwendung der in Tab. 1 angeführten Schwingungsfrequenzen und 1,313 Å als C—O-Abstand berechnet. Als Modell diente ein starrer Rotatorharmonischer Oszillator. Alle Größen wurden für ein Gas im thermodynamischen Standard-Gas-Zustand der Fugazitätseinheit (1 Atmosphäre) mit Hilfe der üblichen Formeln und der von $Pitzer^{26}$ angegebenen Funktionentafeln für die Beiträge harmonischer Oszillatoren berechnet. Die berechneten Werte der Hauptträgheitsmomente sind für $^{12}C^{16}O_3$ und $^{13}C^{16}O_3$:

²⁶ K. S. Pitzer, Quantum Chemistry, Prentice-Hall, New York (1953).

$$I_{xx} = I_{yy} = 41,3753 \text{ AMU* Å}^2 (68,7298 \times 10^{-40} \text{ g cm}^2)$$

$$I_{zz} = 82,7506 \text{ AMU* Å}^2 (137,4596 \times 10^{-40} \text{ g cm}^2)$$

und für 12C18O3:

$$\begin{split} I_{xx} = I_{yy} = 46,\!5472 \text{ AMU Å}^2 & (77,\!3209\!\times\!10^{-40} \text{ g cm}^2) \\ I_{zz} = 93,\!0944 \text{ AMU Å}^2 & (154,\!6419\!\times\!10^{-40} \text{ g cm}^2) \end{split}$$

Die durch Zentrifugalverzerrung, Wechselwirkung zwischen Rotation und Schwingung, Kernspins usw. bedingten Beiträge wurden in den Berechnungen vernachlässigt. Als Symmetriezahl wurde 6 angenommen, ferner Singulett-Elektronen-Grundzustände und die chemischen Atomgewichte. Die besonderen Werte der vier thermodynamischen Funktionen der drei Moleküle sind in den Tab. 7, 8 und 9 in cal·Grad⁻¹·Mol⁻¹ zusammengestellt. Obwohl das Molekül kürzlich auch experimentell aufgefunden worden ist, wurden noch keine Entropien oder spezifische Wärmen gemessen, die einen Vergleich mit den hier berechneten gestatten würden.

Tabelle 9. Enthalpie, freie Enthalpie, Entropie und spezifische Wärme des Moleküls ¹³C¹⁶O₃ für den Zustand des idealen Gases bei einem Druck von 1 Atmosphäre (alle Größen in cal·Grad⁻¹·Mol⁻¹)

$T(^{\circ}{ m K})$	$(H_{ m 0}-\!\!\!\!-H_{ m 0}{}^{\circ})/T$	$(F_{\mathfrak{0}}H_{\mathfrak{0}}{}^{\circ})/T$	S°	C_{p}°
200	7,975	46,926	54,901	8,156
273,16	8,094	49,428	57,522	8,759
298,16	8,167	50,138	58,305	9,055
300	8,168	50,189	58,357	9,057
400	8,548	52,587	61,135	10,342
500	9,043	54,549	63,592	11,661
600	9,585	56,243	65,828	12,891
700	10,129	57,760	67,889	13,930
800	10,663	59,148	69,811	14,820
900	11,175	$60,\!439$	71,614	15,564
1000	11,643	61,650	73,293	16,192
1100	12,075	62,767	74,842	16,666
1200	12,273	$63,\!578$	75,851	16,950
1300	12,836	64,837	77,673	17,418
1400	13,176	65,812	78,988	17,702
1500	13,483	66,722	80,205	17,946
1600	13,779	67,620	81,399	18,156
1700	14,039	68,451	82,490	18,333
1800	14,271	69,246	83,517	18,477
1900	14,501	70,036	84,537	18,607
2000	14,716	70,796	85,512	18,725

^{* 1} AMU = 1 Atomic Mass Unit.